
Partial Differential Equation Notes
By Owen Fuller

Based on

1 Introduction and Classifications of PDEs

auxx + buxy + cuyy + dux + euy + fu+ g = 0

for (x, y) ∈ R2.

• Hyperbolic: b2 − 4ac > 0

• Elliptic : b2 − 4ac < 0

• Parabolic b2 − 4ac = 0 and 2cd 6= be and/or 2ae 6= bd.

2 Finite Differencing Procedure

Un is the numerical solution
un is the exact solution

1. Define what we want to approximate

2. Replace derivatives with a difference, approximate other terms

3. Apply boundary conditions

3 Local Truncation Error

Global Error: the difference between the numerical and exact

en = Un − u(t = n∆t)

We can use this to define a global error vector for given ∆t

e(∆t) = [e0, ..., eN ]T

Assume a derivative of order k is discretised to yield a term with division by exactly k
factors of grid spacing,

du

dt
→ Un+1 − Un

∆t

Subject to this assumption we define:
Local Truncation Error: the error in the discrete equation when the exact solution is sub-
stituted in.
Forward Euler Discretisation:

Un+1 − Un
∆t

= α(n∆t)Un + β(n∆t)

Associated Local Truncation Error:

τn+1 =
un+1 − un

∆t
− α(n∆t)un − β(n∆t)

is the Euler difference equation truncation error.
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4 Consistency

Consistent: in a given norm if
lim

∆x→0
‖τ(∆x)‖ = 0

where τ(∆x) is

5 Stability

6 The Method of Lines

7 Finite Difference for the Heat Equation

8 Method of Lines and Consistency

9 Lax-Richtmyer Stability

Stability Recap: consider
du

dt
= λu for t ∈ (0, T )

Local truncation error satisfies
τ0 = 0

τn+1 =
un+1 − un

∆t
− λun

stuffabouterror

en = −
n∑
p=1

(1 + λ∆t)n−p∆tτp for n ∈ {0, ..., N}

blah blah blah we get

‖en‖ = ‖Bne0 −∆t
n∑
p=1

Bn−pτp‖

≤ ‖Bne0‖+ ∆t
n∑
p=1

‖Bn−pτp‖

=⇒ ‖en‖ ≤ ‖Bne0‖+ ∆tn max
p∈{1,...,n}

‖Bn−pτp‖

≤ ‖Bne0‖+ ∆tN max
p∈{1,...,n}

‖Bn−pτp‖

=

10 Von Neumann Analysis

von Neumann analysis can be applied to problems which satisfy

• Lax-Richtmyer stability assumptions

• Fn = 0

• 1 ’spatial’ dimension (*)
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• Periodic ’spatial’ boundary conditions (*)

• Unifrom grid spacing

(*) points can be generalised for some other cases. For Fn 6= 0 it is sufficient to prove Lax-
Richtmyer stability for the Fn = 0 case, since stability is dependent only upon B matrix.

Method

Make the substitution

Unm = exp

(
2ikπ

m∆x

D

)
Un+1
m = αkU

n
m

Find amplification factors αk (if we can find it for each k ∈ {0, . . . ,M − 1} then B must be a
normal matrix).
αk are eigenvalues of B. So choose ∆t s.t. all amplification factors are bounded

|αk| ≤ 1 for k ∈ {0, . . . ,M − 1}

for all positive ∆t.

Forward Euler Backward Euler Crank-Nicolson

Matrix
solves No Yes Yes
required?

Local
truncation
error

O(∆t) +O
(
(∆x)2

)
O(∆t) +O

(
(∆x)2

)
O
(
(∆t)2

)
+O

(
(∆x)2

)
Condition
for
stability

κ∆t
(∆x)2

≤ 1
2 None None

Identities:

cos(z) =
eiz + e−iz

2

sin(z) =
eiz − e−iz

2i

11 Finite Differences for Elliptic PDEs

Poisson Equation:
∇2u = F (x1, . . . , xd)

where ∇2 =
∑d

r=1
∂2

∂x2r

Dirichlet boundary conditions:
u = uD on ∂Ω

Neumann boundary conditions:

∇u · n̂ = g on ∂Ω

where ∫
Ω
F =

∫
∂Ω
g

and with ∫
Ω
u = 0
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Stencils

Five point Laplacian:

Um−1,p+Um+1,p−4Um,p+Um,p−1+Um,p+1

(∆x)2
= F (m∆x, p∆x)

for m ∈ {1, . . . ,M − 1}, p ∈ {1, . . . ,M − 1}

with matrix representation 
−4 1 1 0
1 −4 0 1
1 0 −4 1
0 1 1 −4



U1,1

U2,1

U1,2

U2,2


The Poisson equation can be equipped with Dirichlet conditions on the boundary of the

domain, or Neumann conditions provided certain additional constraints are satisfied.

Elliptic problems can be tackled on a computer by using finite difference approximations.
There is no “time-like” dimension, so approximations are made on a spatial grid only.

This will lead to a matrix system of equations. There is a straightforward process to follow
in order to derive this system.

12 Elliptic Problems and Stability

The Poisson equation in a unit square subject to homogenous Dirichlet boundary conditions

uxx + uyy = F (x, y) for (x, y) ∈ (0, 1)2

u(x = 0, y) = u(x = 1, y) = u(x, y = 0) = u(x, y = 1) = 0

Discretising
Um−1,p+Um+1,p−4Um,p+Um,p−1+Um,p+1

(∆x)2
= F (m∆x, p∆x)

for m, p ∈ {1, . . . ,M − 1}
U0,p = UM,p = Um,0 = Um,M = 0 for m, p ∈ {0, . . . ,M}

where Um,p is the discrete solution at x = m∆x and y = p∆x, where ∆x = 1
M with M positive

integer.

Notes prove/find stability

13 The Advection Equation

The advection equation:
ut + vux = 0

14 Characteristic Based Methods

Consider
ut + vux = 0

where v is a real constant. This has the general solution

u(x, t) = Q(x− vt)
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for some function Q set by the initial and boundary conditions. The solution is constant along
lines of constant x− vt (the characteristics).

Characteristic Based Methods: Trace solutions along the characteristics.

One characteristic based method:

1. Introduce fully discrete solution values

2. From a given grid point at ”time” level n + 1, trace backwards along characteristics to
”time” level n

3. Interpolate the numerical solution at the origin point of the characteristic at ”time” level
n

e.g for v > 0, v∆t/∆x ≤ 1, linearly interpolating between grid points at x = a+m∆x and
x = a+ (m− 1)∆x

Un+1
m = Unm +

v∆t

∆x
(Unm−1 − Unm)

Which can be rearranged and found directly via the method of lines, using an ”upwind” dis-
cretisation in the x-dimension.

More generally can construct a one-sided difference approximation, e.g. in semi-discrete
form for v > 0

dUm
dt

+
v

∆x

Q∑
q=0

αqUm−q = 0

where the αs can be cohsen to yield desired properties (e.g. a local truncation error of a given
order).

Upwinding Worked Example

Taylor Expansions:

un+1
m = unm + ∆t (ut)

n
m +O

(
(∆t)2

)
un+1
m±1 = un+1

m ±∆x (ux)n+1
m +

1

2
(∆x)2 (uxx)n+1

m ± 1

6
(∆x)3 (uxxx)n+1

m +O
(
(∆x)4

)
unm−1 + unm+1 = 2unm + (∆x)2 (uxx)nm +

1

12
(∆x)4 (uxxxx)nm +O

(
(∆x)6

)
unm−2 + unm+2 = 2unm + 4(∆x)2 (uxx)nm +

4

3
(∆x)4 (uxxxx)nm +O

(
(∆x)6

)
um−1,p + um+1,p = 2um,p + (∆x)2 (uxx)m,p +O

(
(∆x)4

)
um,p−1 + um,p+1 = 2um,p + (∆x)2 (uyy)m,p +O

(
(∆x)4

)
Definitions

• Taylor Series:

• Consistency: a numerical method is consistent in a given norm if

lim
∆x→0

‖τ(∆x)‖ = 0

where τ(∆x) is a local truncation error vector associated with a grid spacing ∆x.
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• Convergence: a numerical method is convergent in a given norm if

lim
∆x→0

‖e(∆x)‖ = 0

where e(∆x) is a global error vector associated with a grid spacing ∆x.

• Accurate: if there is a non-zero real constant C such that

lim
∆x→0

‖e(∆x)‖
(∆x)p

= C

then the numerical discretisation method is said to be p-th order accurate.

• Stability: a numerical method is said to be stable in a given norm if there is some grid
spacing ∆x0 st ∀∆x < ∆x0,

– The discretisation matrix A(∆x) is invertible.

– There is some C ∈ (0,∞) st ∀∆x < ∆x0

‖(A(∆x))−1w‖ ≤ C‖w‖

for all compatible sized vectors w.

Examples
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