Partial Differential Equation Notes
By Owen Fuller
Based on

1 Introduction and Classifications of PDEs

$$
a u_{x x}+b u_{x y}+c u_{y y}+d u_{x}+e u_{y}+f u+g=0
$$

for $(x, y) \in \mathbb{R}^{2}$.

- Hyperbolic: $b^{2}-4 a c>0$
- Elliptic : $b^{2}-4 a c<0$
- Parabolic $b^{2}-4 a c=0$ and $2 c d \neq b e$ and/or $2 a e \neq b d$.

2 Finite Differencing Procedure

U_{n} is the numerical solution
u_{n} is the exact solution

1. Define what we want to approximate
2. Replace derivatives with a difference, approximate other terms
3. Apply boundary conditions

3 Local Truncation Error

Global Error: the difference between the numerical and exact

$$
e_{n}=U_{n}-u(t=n \Delta t)
$$

We can use this to define a global error vector for given Δt

$$
e(\Delta t)=\left[e_{0}, \ldots, e_{N}\right]^{T}
$$

Assume a derivative of order k is discretised to yield a term with division by exactly k factors of grid spacing,

$$
\frac{d u}{d t} \rightarrow \frac{U_{n+1}-U_{n}}{\Delta t}
$$

Subject to this assumption we define:
Local Truncation Error: the error in the discrete equation when the exact solution is substituted in.
Forward Euler Discretisation:

$$
\frac{U_{n+1}-U_{n}}{\Delta t}=\alpha(n \Delta t) U_{n}+\beta(n \Delta t)
$$

Associated Local Truncation Error:

$$
\tau_{n+1}=\frac{u_{n+1}-u_{n}}{\Delta t}-\alpha(n \Delta t) u_{n}-\beta(n \Delta t)
$$

is the Euler difference equation truncation error.

4 Consistency

Consistent: in a given norm if

$$
\lim _{\Delta x \rightarrow 0}\|\underline{\tau}(\Delta x)\|=0
$$

where $\underline{\tau}(\Delta x)$ is

5 Stability

6 The Method of Lines

7 Finite Difference for the Heat Equation

8 Method of Lines and Consistency

9 Lax-Richtmyer Stability

Stability Recap: consider

$$
\frac{d u}{d t}=\lambda u \text { for } t \in(0, T)
$$

Local truncation error satisfies

$$
\begin{gathered}
\tau^{0}=0 \\
\tau^{n+1}=\frac{u^{n+1}-u^{n}}{\Delta t}-\lambda u^{n} \\
\text { stuffabouterror } \\
e^{n}=-\sum_{p=1}^{n}(1+\lambda \Delta t)^{n-p} \Delta t \tau^{p} \text { for } n \in\{0, \ldots, N\}
\end{gathered}
$$

blah blah blah we get

$$
\begin{aligned}
\left\|e^{n}\right\| & =\left\|B^{n} e^{0}-\Delta t \sum_{p=1}^{n} B^{n-p} \tau^{p}\right\| \\
& \leq\left\|B^{n} e^{0}\right\|+\Delta t \sum_{p=1}^{n}\left\|B^{n-p} \tau^{p}\right\| \\
\Longrightarrow\left\|e^{n}\right\| & \leq\left\|B^{n} e^{0}\right\|+\Delta t n \max _{p \in\{1, \ldots, n\}}\left\|B^{n-p} \tau^{p}\right\| \\
& \leq\left\|B^{n} e^{0}\right\|+\Delta t N \max _{p \in\{1, \ldots, n\}}\left\|B^{n-p} \tau^{p}\right\| \\
& =
\end{aligned}
$$

10 Von Neumann Analysis

von Neumann analysis can be applied to problems which satisfy

- Lax-Richtmyer stability assumptions
- $F^{n}=0$
- 1 'spatial' dimension (*)
- Periodic 'spatial' boundary conditions (*)
- Unifrom grid spacing
${ }^{(*)}$ points can be generalised for some other cases. For $F^{n} \neq 0$ it is sufficient to prove LaxRichtmyer stability for the $F^{n}=0$ case, since stability is dependent only upon B matrix.

Method

Make the substitution

$$
\begin{aligned}
U_{m}^{n} & =\exp \left(2 i k \pi \frac{m \Delta x}{D}\right) \\
U_{m}^{n+1} & =\alpha_{k} U_{m}^{n}
\end{aligned}
$$

Find amplification factors α_{k} (if we can find it for each $k \in\{0, \ldots, M-1\}$ then B must be a normal matrix).
α_{k} are eigenvalues of B. So choose Δt s.t. all amplification factors are bounded

$$
\left|\alpha_{k}\right| \leq 1 \quad \text { for } k \in\{0, \ldots, M-1\}
$$

for all positive Δt.

	Forward Euler	Backward Euler	Crank-Nicolson
Matrix solves required?	No	Yes	Yes
Local truncation error	$\mathcal{O}(\Delta t)+\mathcal{O}\left((\Delta x)^{2}\right)$	$\mathcal{O}(\Delta t)+\mathcal{O}\left((\Delta x)^{2}\right)$	$\mathcal{O}\left((\Delta t)^{2}\right)+\mathcal{O}\left((\Delta x)^{2}\right)$
Condition for stability	$\frac{\kappa \Delta t}{(\Delta x)^{2}} \leq \frac{1}{2}$	None	None

Identities:

$$
\begin{aligned}
& \cos (z)=\frac{e^{i z}+e^{-i z}}{2} \\
& \sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}
\end{aligned}
$$

11 Finite Differences for Elliptic PDEs

Poisson Equation:

$$
\nabla^{2} u=F\left(x_{1}, \ldots, x_{d}\right)
$$

where $\nabla^{2}=\sum_{r=1}^{d} \frac{\partial^{2}}{\partial x_{r}^{2}}$
Dirichlet boundary conditions:

$$
u=u_{D} \quad \text { on } \partial \Omega
$$

Neumann boundary conditions:

$$
\nabla u \cdot \underline{\hat{n}}=g \quad \text { on } \partial \Omega
$$

where

$$
\int_{\Omega} F=\int_{\partial \Omega} g
$$

and with

$$
\int_{\Omega} u=0
$$

Stencils

Five point Laplacian:

$$
\begin{gathered}
\frac{U_{m-1, p}+U_{m+1, p}-4 U_{m, p}+U_{m, p-1}+U_{m, p+1}}{(\Delta x)^{2}}=F(m \Delta x, p \Delta x) \\
\quad \text { for } m \in\{1, \ldots, M-1\}, p \in\{1, \ldots, M-1\}
\end{gathered}
$$

with matrix representation

$$
\left[\begin{array}{cccc}
-4 & 1 & 1 & 0 \\
1 & -4 & 0 & 1 \\
1 & 0 & -4 & 1 \\
0 & 1 & 1 & -4
\end{array}\right]\left[\begin{array}{l}
U_{1,1} \\
U_{2,1} \\
U_{1,2} \\
U_{2,2}
\end{array}\right]
$$

The Poisson equation can be equipped with Dirichlet conditions on the boundary of the domain, or Neumann conditions provided certain additional constraints are satisfied.

Elliptic problems can be tackled on a computer by using finite difference approximations. There is no "time-like" dimension, so approximations are made on a spatial grid only.

This will lead to a matrix system of equations. There is a straightforward process to follow in order to derive this system.

12 Elliptic Problems and Stability

The Poisson equation in a unit square subject to homogenous Dirichlet boundary conditions

$$
\begin{gathered}
u_{x x}+u_{y y}=F(x, y) \text { for }(x, y) \in(0,1)^{2} \\
u(x=0, y)=u(x=1, y)=u(x, y=0)=u(x, y=1)=0
\end{gathered}
$$

Discretising

$$
\begin{aligned}
& \frac{U_{m-1, p}+U_{m+1, p}-4 U_{m, p}+U_{m, p-1}+U_{m, p+1}}{(\Delta x)^{2}}=F(m \Delta x, p \Delta x) \\
& \text { for } m, p \in\{1, \ldots, M-1\} \\
& U_{0, p}=U_{M, p}=U_{m, 0}=U_{m, M}=0 \quad \text { for } m, p \in\{0, \ldots, M\}
\end{aligned}
$$

where $U_{m, p}$ is the discrete solution at $x=m \Delta x$ and $y=p \Delta x$, where $\Delta x=\frac{1}{M}$ with M positive integer.

13 The Advection Equation

The advection equation:

$$
u_{t}+v u_{x}=0
$$

14 Characteristic Based Methods

Consider

$$
u_{t}+v u_{x}=0
$$

where v is a real constant. This has the general solution

$$
u(x, t)=Q(x-v t)
$$

for some function Q set by the initial and boundary conditions. The solution is constant along lines of constant $x-v t$ (the characteristics).

Characteristic Based Methods: Trace solutions along the characteristics.

One characteristic based method:

1. Introduce fully discrete solution values
2. From a given grid point at "time" level $n+1$, trace backwards along characteristics to "time" level n
3. Interpolate the numerical solution at the origin point of the characteristic at "time" level n
e.g for $v>0, v \Delta t / \Delta x \leq 1$, linearly interpolating between grid points at $x=a+m \Delta x$ and $x=a+(m-1) \Delta x$

$$
U_{m}^{n+1}=U_{m}^{n}+\frac{v \Delta t}{\Delta x}\left(U_{m-1}^{n}-U_{m}^{n}\right)
$$

Which can be rearranged and found directly via the method of lines, using an "upwind" discretisation in the x-dimension.

More generally can construct a one-sided difference approximation, e.g. in semi-discrete form for $v>0$

$$
\frac{\mathrm{d} U_{m}}{\mathrm{~d} t}+\frac{v}{\Delta x} \sum_{q=0}^{Q} \alpha_{q} U_{m-q}=0
$$

where the α_{s} can be cohsen to yield desired properties (e.g. a local truncation error of a given order).

Upwinding Worked Example

Taylor Expansions:

$$
\begin{aligned}
u_{m}^{n+1} & =u_{m}^{n}+\Delta t\left(u_{t}\right)_{m}^{n}+\mathcal{O}\left((\Delta t)^{2}\right) \\
u_{m \pm 1}^{n+1} & =u_{m}^{n+1} \pm \Delta x\left(u_{x}\right)_{m}^{n+1}+\frac{1}{2}(\Delta x)^{2}\left(u_{x x}\right)_{m}^{n+1} \pm \frac{1}{6}(\Delta x)^{3}\left(u_{x x x}\right)_{m}^{n+1}+\mathcal{O}\left((\Delta x)^{4}\right) \\
u_{m-1}^{n}+u_{m+1}^{n} & =2 u_{m}^{n}+(\Delta x)^{2}\left(u_{x x}\right)_{m}^{n}+\frac{1}{12}(\Delta x)^{4}\left(u_{x x x x}\right)_{m}^{n}+\mathcal{O}\left((\Delta x)^{6}\right) \\
u_{m-2}^{n}+u_{m+2}^{n} & =2 u_{m}^{n}+4(\Delta x)^{2}\left(u_{x x}\right)_{m}^{n}+\frac{4}{3}(\Delta x)^{4}\left(u_{x x x x}\right)_{m}^{n}+\mathcal{O}\left((\Delta x)^{6}\right) \\
\hline \hline u_{m-1, p}+u_{m+1, p} & =2 u_{m, p}+(\Delta x)^{2}\left(u_{x x}\right)_{m, p}+\mathcal{O}\left((\Delta x)^{4}\right) \\
u_{m, p-1}+u_{m, p+1} & =2 u_{m, p}+(\Delta x)^{2}\left(u_{y y}\right)_{m, p}+\mathcal{O}\left((\Delta x)^{4}\right)
\end{aligned}
$$

Definitions

- Taylor Series:
- Consistency: a numerical method is consistent in a given norm if

$$
\lim _{\Delta x \rightarrow 0}\|\underline{\tau}(\Delta x)\|=0
$$

where $\underline{\tau}(\Delta x)$ is a local truncation error vector associated with a grid spacing Δx.

- Convergence: a numerical method is convergent in a given norm if

$$
\lim _{\Delta x \rightarrow 0}\|\underline{e}(\Delta x)\|=0
$$

where $\underline{e}(\Delta x)$ is a global error vector associated with a grid spacing Δx.

- Accurate: if there is a non-zero real constant C such that

$$
\lim _{\Delta x \rightarrow 0} \frac{\|\underline{e}(\Delta x)\|}{(\Delta x)^{p}}=C
$$

then the numerical discretisation method is said to be p-th order accurate.

- Stability: a numerical method is said to be stable in a given norm if there is some grid spacing Δx_{0} st $\forall \Delta x<\Delta x_{0}$,
- The discretisation matrix $A(\Delta x)$ is invertible.
- There is some $C \in(0, \infty)$ st $\forall \Delta x<\Delta x_{0}$

$$
\left\|(A(\Delta x))^{-1} \underline{w}\right\| \leq C\|\underline{w}\|
$$

for all compatible sized vectors \underline{w}.

Examples

