Partial Differential Equation Notes
By Owen Fuller
Based on

1 Introduction and Classifications of PDEs
AUy + DUgy + Clyy + dug +euy + fu+g =0
for (z,y) € R2.
e Hyperbolic: b? — 4ac > 0
e Elliptic : b? — 4ac < 0

e Parabolic b? — 4ac = 0 and 2cd # be and/or 2ae # bd.

2 Finite Differencing Procedure

U,, is the numerical solution
un, is the exact solution

1. Define what we want to approximate
2. Replace derivatives with a difference, approximate other terms

3. Apply boundary conditions

3 Local Truncation Error
Global Error: the difference between the numerical and exact
en = Up — u(t = nAt)
We can use this to define a global error vector for given At
e(At) = [eo, en]t

Assume a derivative of order k is discretised to yield a term with division by exactly k

factors of grid spacing,
du R Up+1 — Uy

dt At
Subject to this assumption we define:
Local Truncation Error: the error in the discrete equation when the exact solution is sub-
stituted in.
Forward Euler Discretisation:

Unit =Un _ o (n AU, + B(nrt)
At
Associated Local Truncation Error:
Tnt+l = % — a(nAt)u, — S(nAt)

is the Euler difference equation truncation error.



4 Consistency

Consistent: in a given norm if

dm [(Az)| =0

where 7(Ax) is

Stability
The Method of Lines

5
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7 Finite Difference for the Heat Equation
8 Method of Lines and Consistency

9

Lax-Richtmyer Stability

Stability Recap: consider

d
dit‘ = u for t € (0,7)
Local truncation error satisfies
0 _
7 =0
+1 n
n+l _ u" —u —
T A7 U
stu f fabouterror
n
e == (14+ MAt)""PAtr? for n € {0,..., N}
p=1

blah blah blah we get

n
le"|| = || B"e” — Aty | B" 7P|
p=1

n
< || B | + Aty ||B P
p=1
— |le"|| < ||B"°|| + Atn  max || B"P7P||
pe{l,..n}

)

< ||B"|| + AtN max ||B"P7rP|
pe{l }

)

10 Von Neumann Analysis

von Neumann analysis can be applied to problems which satisfy
e Lax-Richtmyer stability assumptions
o F" =0

e 1 ’spatial’ dimension (*)



e Periodic ’spatial’ boundary conditions (*)
e Unifrom grid spacing

(*) points can be generalised for some other cases. For F™ # 0 it is sufficient to prove Lax-
Richtmyer stability for the F™ = 0 case, since stability is dependent only upon B matrix.

Method
Make the substitution

mAzx
U = 2k
o exp( ikm D )

Uptt = ay Uy,

Find amplification factors «y (if we can find it for each k € {0,..., M — 1} then B must be a
normal matrix).
ay, are eigenvalues of B. So choose At s.t. all amplification factors are bounded

lag] <1 for ke {0,...,M —1}

for all positive At.

H Forward Euler ‘ Backward Euler ‘ Crank-Nicolson
Matrix
solves No Yes Yes
required?
Local
truncation || O(At) + O ((Az)?) | O(At) + O ((Az)?) | O ((A)?) + O ((Az)?)
error
Condition
for (Zé)tz < % None None
stability
Identities: ' '
_ €ZZ _'__ e—ZZ
cos(z) = 5
. % _ o2
sin(z) = 5;

11 Finite Differences for Elliptic PDEs

Poisson Equation:
Viu = F(z1,...,24)

where V2 =57, ;722
Dirichlet boundary conditions:
uw=up on Jf)
Neumann boundary conditions:
Vu-n=g on 0f)

where

and with



Stencils
Five point Laplacian:
Uttt gt Oy Unntl. — F(m Az, pAx)
forme{l,..., M —-1},pe{l,..., M —1}

with matrix representation

4 1 1 0 Ui
1 -4 0 1 Us
1 0 —4 1 Uis
0 1 1 —4] | Uy

The Poisson equation can be equipped with Dirichlet conditions on the boundary of the
domain, or Neumann conditions provided certain additional constraints are satisfied.

Elliptic problems can be tackled on a computer by using finite difference approximations.
There is no “time-like” dimension, so approximations are made on a spatial grid only.

This will lead to a matrix system of equations. There is a straightforward process to follow
in order to derive this system.

12 Elliptic Problems and Stability

The Poisson equation in a unit square subject to homogenous Dirichlet boundary conditions

Uze + Uyy = F(2,7) for( ,y) € (0,1)2
u(z =0,y) =u(x=1y) =u(z,y=0)=u(@,y=1)=0

Discretising

Umfl, +Um+l, *4Um,p+Um, 71+Um, +1
£ A L Ll = F(mAz, pAx)

form,pe {1,....M — 1}
U()Vp:UM,szmp:Um,M:O fOI“m,pE{O,...,M}

where U, , is the discrete solution at * = mAz and y = pAz, where Az = ﬁ with M positive
integer.

Notes prove/find stability

13 The Advection Equation

The advection equation:
u +vuy, =0

14 Characteristic Based Methods

Consider
ur + vu, =0

where v is a real constant. This has the general solution

u(z,t) = Q(x — vt)



for some function @) set by the initial and boundary conditions. The solution is constant along
lines of constant = — vt (the characteristics).

Characteristic Based Methods: Trace solutions along the characteristics.

One characteristic based method:
1. Introduce fully discrete solution values

2. From a given grid point at ”time” level n + 1, trace backwards along characteristics to
"time” level n

3. Interpolate the numerical solution at the origin point of the characteristic at ”time” level
n

e.g for v > 0,vAt/Azx < 1, linearly interpolating between grid points at = a + mAx and
r=a+ (m—1)Ax
Un+1 Un + UAAt( Un)

Which can be rearranged and found directly via the method of lines, using an ”upwind” dis-
cretisation in the z-dimension.

More generally can construct a one-sided difference approximation, e.g. in semi-discrete

form for v >0
dU
Zaq —¢=0

where the a; can be cohsen to yield desired properties (e.g. a local truncation error of a given
order).

Upwinding Worked FExample

Taylor Expansions:
uptt = ul 4+ At (u)? + O ((At)Q)

1
u L = w4 A (ug)T A+ f(A:c) (U)o £ = (A:c) (Ugza) "+ O ((Az)*)

6
12(Am) (Uzzzz)m + O ((Ax)G)

mo U = 2ul, + 4(AT)? (g, + §<A:c> (tazea )y, + O ((A2)°)
Um—1p + Umnt1p = 2Ump + (AT)? (Uz)pp + O ((Az)")
U p—1 + Umpt1 = 2Ump + (Ax)2 (uyy)mp +0 ((AZL‘)4)

Upy 1+ Upy g = 2uyy, + (Ax) ()i

Definitions

e Taylor Series:
e Consistency: a numerical method is consistent in a given norm if
lim |[z(Az)[| =0
Az—0
where 7(Ax) is a local truncation error vector associated with a grid spacing Awx.

>



e Convergence: a numerical method is convergent in a given norm if

li Az)| =
Aglggllg( z)][ =0

where e(Ax) is a global error vector associated with a grid spacing Az.
e Accurate: if there is a non-zero real constant C such that

. le(Az)||
A Ay ¢

then the numerical discretisation method is said to be p-th order accurate.

e Stability: a numerical method is said to be stable in a given norm if there is some grid
spacing Axg st VAx < Axy,

— The discretisation matrix A(Ax) is invertible.

— There is some C € (0,00) st VAz < Az
I(A(A2) ™ w]| < Clu]

for all compatible sized vectors w.

Examples




